第2章 綜合演練

月 日

■ 一、單選題(每題5分,共10分)

 \emph{I} . 調查某地區高一 1122 名學生每分鐘脈搏數如下表,則第 65 百分位數 (P_{65})為下列何者?

每分鐘 脈搏數	70 (含) 以下	71	72	73	74	75	76	77	78	79	80	81(含) 以上
人數	167	74	81	88	85	92	95	88	75	69	53	155

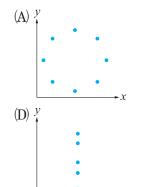
(A) 75

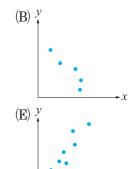
(B) 76

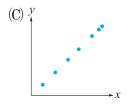
(C) 77

(D) 78

(E) 79


解 由題目知,資料作累計人數表如下:


每分鐘 脈搏數	70(含) 以下	71	72	73	74	75	76	77	78	79	80	81(含)以上
人數	167	74	81	88	85	92	95	88	75	69	53	155
累計人數	167	241	322	410	495	587	682	770	845	914	967	1122


 $1122 \times 0.65 = 729.3$

故 P_{65} 即第 730 名學生的脈搏數,即為 77 故選(C)

2. 請就下列 5 個二維數據的散布圖中,選出相關係數最接近 1 的選項。

解圖(A)與圖(D)為零相關,圖(B)的相關係數小於 0 圖(E)各點靠近最適直線的程度不如圖(C) 圖(C)的點幾乎在一條直線上,故選(C)

■ 二、多選題(每題5分,所有選項均答對者得5分,錯一個選項得3分,錯兩個選項得1分,其餘不給分,共10分)

- 3. 某校高一760名學生的數學段考成績算術平均為50分,標準差為16分,經全年級任課 老師協調,決定以原始成績乘以 0.7 再加 30 分的方式調整。試就調整後的成績,選出正 確的撰項。
 - (A)算術平均數變為 80 分
 - (B)標準差變為 11.2 分
 - (C)變異數不變
 - (D)第50百分位數不變
 - (E)最高分與最低分的差距變小
- - (A) × : 新的算術平均數 $\mu' = 0.7 \times 50 + 30 = 65$ (分)
 - (B) ○:新的標準差 $\sigma' = 0.7 \times 16 = 11.2$ (分)
 - (C) ×:標準差改變,變異數必改變
 - (D) ×:除了100分仍為100分以外,所有的分數都有變動
 - (E) \bigcirc : 設 M 與 m 分別為原始分數的最高分與最低分,調整後分別為 M' 與 m' $\exists [M'-m'=(0.7M+30)-(0.7m+30)=0.7(M-m) < M-m$

故骥(B)(E)

- 4. 某校高一段考數學成績的平均為 48 分,標準差為 12 分;物理成績的平均為 50 分,標準 差為8分;計算兩科成績的相關係數為0.75。如果將每名學生的數學成績直接加12分, 物理成績乘以 0.8 再加 20 分,且調整後的分數都未超過 100 分。試就調整後的成績,選 出正確選項。
 - (A)調整後數學平均為 60 分
 - (B)調整後數學標準差為24分
 - (C)調整後物理平均為 40 分
 - (D)調整後物理標準差為 6.4 分
 - (E)調整後數學與物理的相關係數為 0.6
- **豳** 令數學成績調整公式為x'=x+12,物理成績調整公式為y'=0.8y+20
 - (A) \bigcirc : 調整後數學平均為 $\mu_{y'} = 48 + 12 = 60(分)$
 - (B) \times :調整後數學標準差不變,即 $\sigma_{x'}=12(分)$
 - (C) × : 調整後物理平均為 $\mu_{v'} = 0.8 \times 50 + 20 = 60$ (分)
 - (D) 〇:調整後物理標準差為 $\sigma_{v'} = 0.8 \times 8 = 6.4$ (分)
 - (E) ×:: 數學調整公式與物理調整公式的伸縮係數都大於 0(同號)
 - ∴相關係數仍為 0.75

故選(A)(D)

■三、填充題(每格 5 分, 共 60 分)

- 5. 為反映國際原油價格的漲跌,石油公司每週調整汽油價格。已知小雯固定每週三加油一 次,過去五週的汽油價格分別是31,31,32,31,30(單位:元/公升),小雯依序在 這五週內分別加油 20,20,15,20,25(單位:公升)。試求:
 - (1) 這五週的平均汽油價格為 元/公升。
 - (2) 小雯加油平均支出為 元/公升。
- 图(1)汽油平均價格即為這五週汽油價格的算術平均數

$$\frac{1}{5}$$
×(31+31+32+31+30)=31(元/公升)

(2) 平均支出即為這五週油價乘以加油數量的加權平均數

$$\frac{31 \times 20 + 31 \times 20 + 32 \times 15 + 31 \times 20 + 30 \times 25}{20 + 20 + 15 + 20 + 25} = \frac{3090}{100} = 30.9 \, (\vec{\pi}/\vec{\triangle})$$

- 6. 假設某校高一甲、乙、丙班各有學生35、40、35人。已知這次段考的數學成績,高一 甲、乙班的平均分別是66分、63分,則:
 - (1) 甲、乙兩班平均為 分。
 - (2) 若甲、乙、丙三班平均為 63 分,則丙班平均為 分。

(1)
$$\frac{66 \times 35 + 63 \times 40}{35 + 40} = \frac{4830}{75} = 64.4(\%)$$

(2) 令丙班平均成績為 x 分

$$\text{III} \frac{66 \times 35 + 63 \times 40 + 35x}{35 + 40 + 35} = 63$$

- \Rightarrow 4830 + 35x = 6930

故丙班平均為60分

- **7.** 已知 1, 3, 5, 7, 9 的算術平均數為 5,標準差為 $2\sqrt{2}$,則 12, 32, 52, 72, 92 的算術 平均數為,標準差為。
- **豳** 觀察已知條件,得 12, 32, 52, 72, 92 與 1, 3, 5, 7, 9 的關係為 y = 10x + 2故算術平均數為 $10 \times 5 + 2 = 52$, 標準差為 $10 \times 2\sqrt{2} = 20\sqrt{2}$

- 8. 某校高一第一次段考數學成績平均為36分,標準差為8分。已知小華得分為64,是全 年級最高分,則:
 - (1) 將小華得分標準化,可得標準化數據為。
 - (2) 由於成績偏低,老師們決定將每位同學的原始分數標準化以後,將標準化數據 X 乘 以 10 再加 60 的方式調整 (即為 Y = 60 + 10X)。若小明的原始分數為 16 分,則調整 後的分數為分。

$$(1) \quad \frac{64-36}{8} = \frac{28}{8} = 3.5$$

(2) 將<u>小明</u>的分數標準化可得 $\frac{16-36}{8} = -2.5$ 故調整後分數為 $60 + 10 \times (-2.5) = 35$

- **?.** 1897 年,<u>美國</u>物理學家多貝爾教授提出多貝爾定律,說明環境溫度(在某個範圍內)與某種蟋蟀叫聲頻率的關係。為了驗證這個定律,<u>小雯以</u> x_i 表示當時的環境溫度(攝氏),以 y_i 表示叫聲頻率,記錄一組二維數據,並計算出平均數 $\mu_x = 20$, $\mu_y = 110$,標準差 $\sigma_x = 7$, $\sigma_y = 49$,相關係數 r = 0.95。試求:
 - (1) 當環境溫度為 28°C 時,可預估蟋蟀叫聲頻率為____。(四捨五入取到整數位)
 - (2) 如果將環境溫度 x_i (°C)改用華氏 x_i '(°F)表示,即 x_i '= $\frac{9}{5}x_i$ +32,則 x_i '與 y_i 的相關 係數 r'=

解

- (1) 最適直線方程式為 $y-110=0.95 \times \frac{49}{7}(x-20)$,即y=110+6.65(x-20) 令x=28代入上式,得 $y=110+6.65(28-20)=163.2 \approx 163$
- (2) 可以看成這兩個變量分別以 $x_i' = \frac{9}{5} x_i + 32$ 與 $y_i' = y_i$ 做平移伸縮

由於伸縮係數 1 與 $\frac{9}{5}$ 同號(都大於 0),故相關係數仍為 0.95

- **10.** 一組二維數據 (x_i, y_i) 的平均數 $\mu_x = 12$, $\mu_y = 17$,已知 x_i 的標準差 $\sigma_x = 3$, x_i 與 y_i 的相關係數 r = 0.8,且 y 對 x 的最適直線 L 通過點 (6, 9),則:
 - (1) 最適直線 L 的斜率 m =
 - (2) y_i 的標準差 $\sigma_y =$ _____。
- **图** (1) 已知最適直線通過(6,9),且最適直線必過(μ_x , μ_y)=(12,17) 故可求得斜率為 $\frac{17-9}{12-6} = \frac{4}{3}$
 - (2) 另一方面,最適直線的斜率也等於 $r \times \frac{\sigma_y}{\sigma_x}$,即 $0.8 \times \frac{\sigma_y}{3} = \frac{4}{3}$,解得 $\sigma_y = 5$

四、計算題(每題10分,共20分)

- //. 某公司最近三年的營業額成長率依序是 -1 %(衰退 1 %)、-19 %(衰退 19 %)、 21 %(成長 21 %),試求:
 - (1) 該公司這三年的營業額成長率之平均。(5分)
 - (2) 該公司的營業額是成長還是衰退?百分比為多少?(5分)
- **翢** 由題意知,這三年的營業額分別是前一年的99%,81%,121%
 - (1) 平均營業額成長率為

$$\sqrt[3]{0.99 \times 0.81 \times 1.21} - 1$$

$$= \sqrt[3]{\frac{99}{100} \times \frac{81}{100} \times \frac{121}{100}} - 1$$

$$= \sqrt[3]{\frac{9 \times 11 \times 9 \times 9 \times 11 \times 11}{100 \times 100 \times 100}} - 1$$

$$= \frac{9 \times 11}{100} - 1 = 0.99 - 1 = -0.01$$

即為-1%

(2) 承(1),平均而言,該公司營業額是衰退的,比率為1%

- **12.** 已知一群二維數據 (x_i, y_i) 中, x_i 的算術平均數 $\mu_x = 40$, x_i 與 y_i 的標準差相等(即 $\sigma_x = \sigma_y$),且 y 對 x 的最適直線方程式為 $y = \frac{3}{4}x + 20$,試求:
 - (1) y_i 的算術平均數 μ_v 。(5 分)
 - (2) x_i 與 y_i 的相關係數 $r \circ (5 分)$
- **解** (1) 最適直線必過(μ_x , μ_y),故 $\mu_y = \frac{3}{4} \mu_x + 20$,將 $\mu_x = 40$ 代入得 $\mu_y = 50$
 - (2) 觀察最適直線方程式,知其斜率為 $\frac{3}{4}$

另一方面,最適直線的斜率為 $r \cdot \frac{\sigma_y}{\sigma_x}$,故 $r \cdot \frac{\sigma_y}{\sigma_x} = \frac{3}{4}$

由已知得 $\sigma_x = \sigma_y$,故得 $r = \frac{3}{4} = 0.75$