第3章機率

3-1 條件機率與獨立事件

重點整理

一、機率的性質

設S是某一試驗的樣本空間,A是樣本空間S的任一事件。

1. 對於任意事件A,其發生的機率必定大於或等於0,小於或等於1。

說明: $P(A) \ge 0$, $P(A) \le 1$, 即 $0 \le P(A) \le 1$ 。

2. 必然事件發生的機率等於1;不可能事件發生的機率等於0。

說明:S的必然事件就是S,必然發生,所以P(S)=1。不可能事件就是 \emptyset ,不 含樣本點,所以 $P(\emptyset)=0$ 。

3. 若事件 A 與事件 B 互斥(即不可能同時發生),則 $P(A \cup B) = P(A) + P(B)$ 。

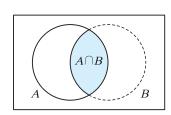
說明: $A \cdot B$ 互斥即 $A \cap B = \emptyset$, $P(A \cap B) = P(\emptyset) = 0$, 所以 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B)$ 。

4. 若事件 A' 為事件 A 的餘事件,則 P(A')=1-P(A)。

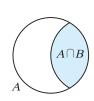
說明:因為P(A)+P(A')=1,所以P(A')=1-P(A)。

二、條件機率

如下圖,在事件A發生的條件(condition)下,討論事件B發生的機率,相當於把A看成樣本空間,討論事件 $A \cap B$ 的機率。也就是說,樣本空間變小了。



相當於把 A 看成樣本空間



1. 條件機率:

設 A , B 為樣本空間 S 中的兩事件,且 P(A) > 0 。則在事件 A 發生的條件下,事件 B 發生的條件機率為 $P(B|A) = \frac{n(A \cap B)}{n(A)} = \frac{P(A \cap B)}{P(A)}$ 。

囫: 擲一顆公正骰子,已知擲出點數大於1,試求擲出奇數點的機率。

國:設擲出點數大於 1 的事件為 $A = \{2, 3, 4, 5, 6\}$, 擲出奇數點的事件為 $B = \{1, 3, 5\}$,

因為 $A \cap B = \{3, 5\}$,故所求機率為 $P(B|A) = \frac{n(A \cap B)}{n(A)} = \frac{2}{5}$ 。

2. 列聯表:

把資料依照屬性的變項填入表格把資訊用一張表來呈現,這張表稱為列聯表(contingency table)。

囫:班上有男生 20 人、女生 16 人,某日調查上學方式,發現男生有 5 人步行上學,女生有 3 人步行上學。已知沒有步行的同學都是乘車上學,則以列聯表呈現資料如下左表:

	步行	乘車	合計
男生	5		20
女生	3		16
合計			

推算如右表

	步行	乘車	合計
男生	5	15	20
女生	3	13	16
合計	8	28	36

故知全班 36 人當中,有 8 人步行上學,28 人乘車上學。

三、獨立事件

1. 獨立事件:

如果事件 A 發生與否,不影響另一事件 B 的機率,我們就說 A 、 B 是獨立事件, 也就是 P(B|A) = P(B),由條件機率的定義知 $P(B|A) = \frac{P(A \cap B)}{P(A)}$,所以 $\frac{P(A \cap B)}{P(A)} = P(B)$,移項得 $P(A \cap B) = P(A)P(B)$ 。

- 2. 兩事件為獨立事件:
 - (1) 設A, B 為樣本空間S 中的兩事件,若 $P(A \cap B) = P(A)P(B)$,則稱A, B 為獨立事件。
 - **囫**: 擲一顆公正骰子一次,令A 表示擲出奇數點的事件,B 表示擲出 1 點或 2 點的事件,C 表示擲出偶數點的事件,D 表示擲出 1 點或 3 點的事

件。因為
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{2}$, $P(D) = \frac{1}{3}$,

$$P(A \cap B) = \frac{1}{6}$$
, $P(A \cap C) = 0$, $P(A \cap D) = \frac{1}{3}$ 。顯然,

$$P(A \cap B) = \frac{1}{6}$$
,且 $P(A)P(B) = \frac{1}{6}$,所以 $A \cdot B$ 是獨立事件。

$$P(A \cap C) = 0$$
,但 $P(A)P(C) = \frac{1}{4}$,所以 $A \cdot C$ 不是獨立事件。

$$P(A \cap D) = \frac{1}{3}$$
,但 $P(A)P(D) = \frac{1}{6}$,所以 $A \cdot D$ 不是獨立事件。

(2) 若 A , B 為獨立事件 , 則 A' , B 為獨立事件 , A , B' 為獨立事件 。 立事件 。

→ 例題 1 機率性質的應用(-)

小倫騎著腳踏車在鄉間小路閒逛,在每個十字路口必須決定直行、向右轉或向左轉。已知他 向右轉的機率是 0.3,向左轉的機率是 0.2,試求:

- (1) 他決定轉彎的機率。(3分)
- (2) 他決定直行的機率。(3分)
- (3) 他決定下車的機率。(4分)
- \mathbf{M} 令 $A \cdot B \cdot C$ 代表直行、向右轉、向左轉這三個事件

顯然,樣本空間由 $A \times B \times C$ 這三個事件構成,而且它們彼此互斥

- (1) 轉彎的機率: $P(B \cup C) = P(B) + P(C) = 0.3 + 0.2 = 0.5$
- (2) 直行的機率: $P(A) = 1 P(B \cup C) = 1 0.5 = 0.5$
- (3) 下車的機率:此為不可能事件 \emptyset $\therefore P(\emptyset) = 0$

→ 例題 2 機率性質的應用□

擲一顆公正的骰子,試求:

- (1) 出現 7 點的機率。(5 分)
- (2) 出現點數大於 0 小於 7 的機率。(5 分)
- \mathbf{M} 樣本空間 $S = \{1, 2, 3, 4, 5, 6\}$
 - (1) 出現 7點的事件為 Ø,是不可能事件,機率為 0
 - (2) 出現點數大於 0 小於 7 的事件為 {1,2,3,4,5,6}, 是必然事件,機率為 1

粗心的水果行店員不小心將 3 個售價 30 元的蘋果與 9 個售價 20 元的蘋果放在一起,並以 20 元的價格出售。試問:

- (1) 任意選一個, 選到原價 30 元蘋果的機率是多少?(5分)
- (2) 小偉從 12 個蘋果中隨意買了 4 個,試求他至少買到一個原價 30 元蘋果的機率。(5 分)
- (1) 所求機率為 $\frac{3}{12} = \frac{1}{4}$
- (2) 樣本空間 S 有 C_4^{12} 個元素,即 $n(S) = C_4^{12}$

令 A 為<u>小</u>偉所買都沒有原價 30 元的蘋果的事件, $n(A) = C_4^9$,得 $P(A) = \frac{C_4^9}{C_4^{12}} = \frac{14}{55}$

至少買到一個原價 30 元蘋果的事件為 A', 故所求為 $P(A')=1-\frac{14}{55}=\frac{41}{55}$

→ 例題 4 機率的性質

- (1) 已知 $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, $P(A \cap B) = \frac{1}{4}$,試求:
 - ① $P(A \cup B) \circ (2 \%)$
 - ② $P(A' \cap B') \circ (2 分)$
- (2) 已知 $P(C) = \frac{1}{3}$, $P(D) = \frac{1}{2}$, $C \cap D = \emptyset$,試求:
 - ① $P(C \cap D) \circ (3 \%)$
 - ② $P(C \cup D) \circ (3 \%)$

- (1) ① $P(A \cup B) = P(A) + P(B) P(A \cap B) = \frac{2}{3} + \frac{1}{2} \frac{1}{4} = \frac{11}{12}$
 - ② $P(A' \cap B') = P(A \cup B)' = 1 P(A \cup B) = 1 \frac{11}{12} = \frac{1}{12}$
- (2) ① 因為 $C \cap D = \emptyset$,所以 $P(C \cap D) = 0$
 - (2) $P(C \cup D) = P(C) + P(D) P(C \cap D) = \frac{1}{3} + \frac{1}{2} 0 = \frac{5}{6}$

→ 例題 5 條件機率

檢視段考成績,全班有 20 人數學及格,有 28 人英文及格,有 16 人數學與英文都及格。現在任意抽選一位同學,試問:

- (1) 若這位同學數學及格,則他英文及格的機率是多少?(5分)
- (2) 若這位同學英文及格,則他數學及格的機率是多少?(5分)
- \mathbf{M} 設 $A \cdot B$ 分別代表數學、英文及格的事件,則 n(A) = 20, n(B) = 28, $n(A \cap B) = 16$
 - (1) 所求機率為 $P(B|A) = \frac{n(B \cap A)}{n(A)} = \frac{16}{20} = \frac{4}{5}$
 - (2) 所求機率為 $P(A|B) = \frac{n(A \cap B)}{n(B)} = \frac{16}{28} = \frac{4}{7}$

● 列聯表在條件機率的應用

同學會聚餐,每人各點一杯飲料。餐廳所提供的飲料只有紅茶或咖啡兩種,並有大杯或小杯可以選擇。已知紅茶合計點 17 杯,其中有 9 杯是小杯;咖啡則是大杯 12 杯、小杯 6 杯。請利用列聯表回答下列問題:

- (1) 小雯點了小杯飲料,試求她點紅茶的機率。(5分)
- (2) 小輝點了咖啡,試問他點大杯的機率。(5分)

	_	_
-	m	æ
-	ш	Ŧ
-	"	т

	大	小	合計
紅茶	8	9	17
咖啡	12	6	18
合計	20	15	35

依題意完成列聯表如上

(1) 所求機率為
$$P(紅茶 | 小杯) = \frac{n(小杯紅茶)}{n(小杯)} = \frac{9}{15} = \frac{3}{5}$$

(2) 所求機率為
$$P($$
大杯 $|$ 咖啡 $) = \frac{n($ 大杯咖啡 $)}{n($ 咖啡 $)} = \frac{12}{18} = \frac{2}{3}$

→ 例題 7 檢驗兩事件是否獨立

擲一顆公正骰子一次,令事件 $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 5\}$, $C = \{3, 4, 5, 6\}$, 試 問:

- (1) A 與 B 是否為獨立事件?(5 分)
- (2) A 與 C 是否為獨立事件?(5 分)

$$P(A) = \frac{4}{6} = \frac{2}{3}, P(B) = \frac{3}{6} = \frac{1}{2}, P(C) = \frac{4}{6} = \frac{2}{3}$$

(1)
$$A \cap B = \{1, 3\}$$
, $(\exists P(A \cap B) = \frac{2}{6} = \frac{1}{3}$,

且
$$P(A)P(B) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$
,得 $P(A \cap B) = P(A)P(B)$,故 A 與 B 是獨立事件

(2)
$$A \cap C = \{3, 4\}$$
, $\# P(A \cap C) = \frac{2}{6} = \frac{1}{3}$,

$$(\Box P(A)P(C) = \frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$
,即 $P(A \cap C) \neq P(A)P(C)$,故A與C不是獨立事件

→ 例題 8 獨立事件公式的應用

甲、乙兩人一起打靶,已知命中率分別為 $\frac{2}{3}$ 、 $\frac{3}{4}$,且兩人命中靶面的事件為獨立事件。今兩人各射擊 1 發,試求:

- (1) 兩人都命中的機率。(5分)
- (2) 靶面至少中1發的機率。(5分)

解 設 $A \cdot B$ 分別為甲、乙命中靶面的事件, $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{4}$

- (1) $:: A \cdot B$ 為獨立事件,故所求為 $P(A \cap B) = P(A)P(B) = \frac{2}{3} \times \frac{3}{4} = \frac{1}{2}$
- (2) 所求為 $1 兩人都沒命中的機率,即 <math>1 P(A' \cap B')$ $\therefore A \cdot B$ 為獨立事件 $\therefore A' \cdot B'$ 也是獨立事件,可得 $P(A' \cap B') = P(A')P(B')$

故所求機率為
$$1 - P(A' \cap B') = 1 - P(A')P(B') = 1 - \frac{1}{3} \times \frac{1}{4} = \frac{11}{12}$$

→ 例題 9 濁立事件與列聯表的應用

甲、乙兩所國中學生申請入學當地一所高中,預定錄取 468 名。已知報名人數為甲校 400 人,乙校 432 人。試問,當表中 a ,b ,c ,d 分別為多少時,我們可以說是否錄取與就讀學校是獨立的?(10 分)

	錄取	未錄取
甲校	а	b
乙校	С	d

 \mathbf{M} 設甲校錄取x人,依題意作列聯表如下:

	錄取	未錄取	合計
甲校	x	400 – <i>x</i>	400
乙校	468 – x	x - 36	432
合計	468	364	832

依題意,甲校學生且錄取的機率=甲校學生的機率×錄取的機率

即
$$\frac{x}{832} = \frac{400}{832} \times \frac{468}{832}$$
,解得 $x = 225$

故得 a = 225, b = 175, c = 243, d = 189

→ 例題 10 濁立事件公式的計算

(1) 假設 $A \cdot B$ 為獨立事件,且 $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$,試求:

①
$$P(A \cap B') \circ (2 \%)$$

②
$$P(A' \cap B') \circ (2 \%)$$

(2) 已知 $C \cdot D$ 是獨立事件,且 $P(C) = \frac{1}{2}$, $P(C \cup D) = \frac{3}{4}$,試求:

 \mathbf{M} (1) ① $A \times B$ 為獨立事件,則 $A \times B'$ 也是獨立事件

故
$$P(A \cap B') = P(A)P(B') = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$$

② $A \cdot B$ 為獨立事件,則 $A' \cdot B'$ 也是獨立事件

数
$$P(A' \cap B') = P(A')P(B') = \frac{2}{3} \times \frac{1}{4} = \frac{1}{6}$$

(2) ① $C \cdot D$ 是獨立事件,故 $P(C \cap D) = P(C)P(D)$

$$\therefore P(C \cup D) = P(C) + P(D) - P(C \cap D)$$

∴
$$\frac{3}{4} = \frac{1}{2} + P(D) - \frac{1}{2}P(D) \Rightarrow \frac{1}{2}P(D) = \frac{1}{4}$$
, 故得 $P(D) = \frac{1}{2}$

② $C \cdot D$ 是獨立事件,D 發生的機率與 C 是否發生無關

故
$$P(D \mid C) = P(D) = \frac{1}{2}$$

〈另解〉

$$P(D \mid C) = \frac{P(D \cap C)}{P(C)} = \frac{P(D)P(C)}{P(C)} = P(D) = \frac{1}{2}$$